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Abstract
Road dust is an indicator widely used when monitoring contamination and evaluating environmental and health risks in urban
ecosystems. We conducted an exhaustive characterization of road dust samples coupling their chemical characteristics and stable
isotope compositions (C and N) with the aim of evaluating the levels and spatial distribution of local contamination as well as to
identify its main source(s) in the coastal city of Cienfuegos (Cuba). Results indicate that the concentrations of several elements
(total nitrogen, S, Ca, V, Cu, Zn, Mo, Sn, Hg, and Pb) exceed the background values reported for both Cuban soils and the upper
continental crust (UCC) and showed a high variability among the sampling sites. We show that road dust contamination in
Cienfuegos induces high associated ecological risks. Among the studied elements, Cd and Hg are the major contributors to the
environmental contamination in the city, mainly along busy roads and downtown. δ13C and δ15N, coupled to a multivariate
statistical analysis, help associate the studied elements to several local sources of contamination: mineral matter derived from
local soils, cement plant and related activities, road pavement alteration, power plant, road traffic, and resuspension of particulate
organic matter (POM). Our results suggest that incorporating the chemical and isotope monitoring of road dust may help
implement more effective environmental management measures in order to reduce their adverse impact on ecosystems and
human health.
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Introduction

Pollution is one of the major issues affecting our environment
today (WHO 2016). In particular, pollution in urban areas has

reached epic proportions, essentially as a result of rapid indus-
trialization and urbanization, becoming an environmental con-
cern worldwide (Modabberi et al. 2018). The level and chem-
ical composition of dust particles deposited on roads and
streets are among the indicators most used to study the health
of urban ecosystems (Christoforidis and Stamatis 2009; Li
et al. 2013, 2019; Lanzerstorfer 2018; Skrbic et al. 2018;
Bourliva et al. 2018).

Road dust is a unique indicator of urban pollution because (i)
it is ubiquitous on roads and highways, (ii) it is of both natural
and anthropogenic origins, and (iii) it reflects recent deposition
as well as the alteration of old materials (LeGalley et al. 2013).
Most of the road dust is composed of (i) naturally occurring
geogenic elements (e.g., Al, Ti, Fe…), (ii) elements from the
roadside soil, and (iii) elements resulting from the alteration of
the pavement (Shi and Lu 2018; Keshavarzi et al. 2018). In
addition, resuspension of deposited particles deriving from road
traffic usually represents the main anthropogenic component of
road dust in urban areas worldwide (Soltani et al. 2015; Men
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et al. 2018; Zhang et al. 2019). This is why road dust is usually
scrutinized to determine the chemical profile of road traffic
emissions (Sternbeck et al. 2002).

Road traffic is one of themajor sources of airborne particles
in urban environments, and the fine particles it is generating
have been proved to have deleterious health and environmen-
tal effects (Ferreira-Baptista and De Miguel 2005; e.g.
Bourliva et al. 2017). Air contamination related to road traffic
affects the population living close to busy roads as well as at
larger spatial scales since emissions can be transported over
long distances (Pateraki et al. 2019). Road dust is also a res-
ervoir of harmful substances, in particular potentially toxic
elements emitted by industries, hospitals, solid waste deposits,
wastewaters, construction activities, painting, pavement alter-
ation, among other urban sources. This may also endanger
other connected environments, such as water bodies subject
to contamination resulting from stormwater and wastewater
discharges (LeGalley et al. 2013; Modabberi et al. 2018).
These discharges, often under the form of road runoff, contain
traditional contaminants, such as micro pollutants, organic
matter, heavy metals, polycyclic aromatic hydrocarbons
(PAH), and perfluorinated compounds, but also emergent con-
taminants such as microplastics and microrubbers, which can
cause a significant alteration of the receiving waters quality
(Sutherland and Tolosa 2000; Kojima et al. 2017; Abbasi et al.
2017; Škrbić et al. 2019; Ghanavati et al. 2019).

As a consequence, governments as well as national and
international organizations have designed and implemented
policies dedicated to reducing the impact of this contamina-
tion and, in general, of human activities in urban environ-
ments, especially in coastal areas (Manuel Trujillo-Gonzalez
et al. 2016; Lloyd et al. 2019). But measuring the actual im-
pact of these policies on the environmental quality of ecosys-
tems is difficult. Unfortunately, the availability of contamina-
tion data time series in urban coastal areas is very limited and
very dispersed geographically.

The city of Cienfuegos, located on the Caribbean coast of
southern Cuba, has not been exempt from pollution issues
(Fattorini et al. 2004). For decades, local authorities have ded-
icated resources and efforts to monitor air and water quality in
its coastal zones (Seisdedo et al. 2016; Morera-Gómez et al.
2018a; Seisdedo et al. 2019). Thus, characterizing the levels
and characteristics (e.g., temporal, spatial distributions, and
types) of emissions from potential sources that may contami-
nate air and receiving waters in urban and coastal zones is a
critical step to establish efficient environmental mitigation
strategies and/or to evaluate the results of the already imple-
mented policies.

With that in mind, we conducted an exhaustive chemical
characterization coupled to a study of the stable C and N
isotope compositions of several road dust samples from the
coastal mid-size city of Cienfuegos in Cuba. Our main objec-
tives were to assess the levels, spatial distribution, and

ecological risks and to identify the main source(s) of local
contamination. To this end, we applied different approaches,
including index of pollution, stable isotope fractionation, and
multivariate analysis (PCA and cluster analysis). Ultimately,
we discussed the implication for human health and the
environment.

Methods

Study area

Cienfuegos city, with a population of ~ 160,000 inhabitants, is
an important tourist and industrial center in Cuba, located in
the south center part of the country on the coast of the
Caribbean Sea (Fig. 1). A significant number of potential air
contamination sources are present within and around this ur-
banized area, including a large petroleum refinery, a thermal
power plant, a cement plant, a harbor, large pier areas and ship
breaking yards, coal storage and packing, scrap storage and
classification sites, very intense transportation activities in-
cluding ferrous scrap trucks and busy ports used for transpor-
tation, and heavy road traffic that mostly runs on diesel (Fig.
1). Several villages and agricultural areas and some resorts are
also located in the region (Fig. 1). The region is typical of the
Caribbean Sea climate, characterized by two distinct dry (ap-
proximately from May to October) and wet (November to
April) seasons. During the last three decades, the average an-
nual rainfall has been 1363 mm, mostly during the wet period
(~ 80%). The yearly prevalent wind direction in the area is
ENE. Meteorological data were provided by the meteorolog-
ical center of the Cienfuegos city.

Road dust sampling

A total of 31 road dust samples were collected from the main
paved roads of Cienfuegos city (Fig. 1) by sweeping an area of
about 1.0 m × 0.5 m from pavement edges using a plastic
dustpan and brushes. Samples were mainly collected at road
intersections. The sampling was conducted on July 20, 2016
(wet season), under sunny and windless conditions and with
no rain having occurred (i.e., having washed the pavement)
during the three days prior to sampling. All samples were
stored and labeled in self-sealed polyethylene bags and imme-
diately brought back to the laboratory for preparation and
analysis. In the laboratory, samples were dried at 45 °C,
passed through a 50-μm sieve and stored in polyethylene bags
until further analysis.

Chemical analysis

Concentrations of 49 major and trace elements (Be, Na, Mg,
Al, P, S, K, Ca, V, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr,
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Fig. 1 Study area showing sampling point locations
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Cd, Sn, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er,
Tm, Yb, Lu, Hf, Tl, Pb, Th, U, Ge, Zr, Nb, Mo, W, Hg) were
conducted on the road dust samples using inductively coupled
plasma mass spectrometry (ICP-MS, Agilent 7500a). The
methodology used was the same than the one described in
Morera-Gómez et al. (2018a). An aliquot (50 mg) of each road
dust sample was digested with HF, H2O2, HNO3, and HCl
(3:3:4:1 mL) in a closed microwave digestion system (CEM
Co., Mars X press). A multi-element solution (Li, Sc, Y, In,
Bi) was added to the sample and indium (In) was used as the
internal standard for further determination by ICP-MS.
Mercury (Hg) concentrations were determined by atomic ab-
sorption spectrometry (AAS) using aMercury Analyzer (MA-
2000 Series, Nippon) on a second 50-mg road dust sample.

Quality assurance of the analytical results was controlled
by repeated analysis of the certified reference materials
(CRMs) CTA-FFA1 and 0217-CM-73007 for major and trace
elements and Hg, respectively. Elemental recoveries, the rela-
tive standard deviation (RSD) obtained from the CRMs, and
the method detection limits (DLs) are provided in Table S1
(Online Resource 1). In addition, several samples were ana-
lyzed in duplicate. The number of replicates and the average
RSD are also provided in Table S1 (Online Resource 1).

Total carbon, total nitrogen, and stable C and N
isotope composition analysis

Concentrations of the total carbon (TC) and total nitrogen
(TN) and their corresponding stable isotope compositions
(δ13C and δ15N) were determined using an elemental analyzer
(Vario MICRO Cube, Elementar, Hanau, Germany) coupled
to an isotope ratio mass spectrometer (IsoPrime 100, Cheadle,
UK) operating in continuous flow mode. Inorganic carbon
(carbonate) was not removed prior to the isotope analysis.
For the analysis, about 4 mg of road dust was packed into a
tin capsule and introduced into the EA autosampler. Isotope
compositions are expressed as δ13C and δ15N values, which
represent the relative difference expressed in per mil (‰) be-
tween the isotope ratio of the sample and that of a standard
(Pee Dee Belemnite (PDB) for carbon and atmospheric N2 for
nitrogen):

δ13C ‰vs:PDBð Þ ¼ Rsample=Rstandard−1
� �� �� 1000 ð1Þ

δ15N ‰vs:AIRð Þ ¼ Rsample=Rstandard−1
� �� �� 1000 ð2Þ

where R = 13C/12C or 15N/14N.
The analytical quality control was performed by routine

analysis of interspersed international carbon and nitrogen iso-
tope standards (IAEA, Vienna, Austria) and the interlaboratory-
calibrated algae reference material 1452 B (University of
Barcelona). We also ran several samples in duplicate. The ob-
tained reproducibility was < 0.2‰ for C and < 0.3‰ for N

stable isotope compositions. Similarly, analytical uncertainties
for TC and TN concentrations were within 2 and 3% of the
reported values, respectively.

Calculations for assessing contamination levels

Different geochemical methods were used to quantify the de-
gree of contamination in the road dust samples:

Enrichment factors

Enrichment factors (EFs) were calculated in order to deter-
mine a possible anthropogenic contribution to the measured
major and trace element concentrations. EF were calculated as
follows:

EFX ¼ CX =CRð Þroad dust= CX =CRð ÞUCC ð3Þ

where X represents the element of interest; EFX the EF of X;
CX the concentration of X; and CR the concentration of a ref-
erence element. In this study, titanium (Ti) was selected as the
reference element. The upper continental crust (UCC) chem-
ical composition was used for normalization (Rudnick and
Gao 2014). According to their EF values, elements can be
classified into three contamination categories (Dehghani
et al. 2017): EF < 2 is considered a deficiency to a minimal
enrichment, 2 < EF < 10 represents a moderate enrichment
and EF ≥ 10 a high enrichment.

Pollution load index

The pollution load index (PLI), for a given sampling site, was
calculated using the following formula (Tomlinson et al.
1980):

PLI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1

f xC
2
f xC

3
f x…xCn

f
n
q

ð4Þ

Ci
f ¼

Ci
sample

Ci
UCC

ð5Þ

where Ci
f is the pollution factor of the element i (of a total of n

elements) and Ci
sample and Ci

UCC are the sample and back-
ground concentrations of element i, respectively. A PLI value
> 1 indicates a polluted road dust, whereas PLI < 1 indicates
no pollution (Tomlinson et al. 1980).

Similarly, the pollution load index for a zone (PLIzone) was
calculated by considering the PLI of each sampling site in the
following equation:

PLIzone ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PLI1xPLI2xPLI3x…xPLIm

m
p

ð6Þ
wherem is the number of sampling sites considered (31 in our
case).
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Potential ecological risk index

The potential ecological risk index (RI), originally introduced
by Hakanson (1980), was also calculated to estimate the de-
gree of contamination of road dust by toxic heavy metals
using the following equation:

RI ¼ ∑Ei
r ¼ ∑Ti

r � Ci
f ¼ ∑Ti

r �
Ci

sample

Ci
UCC

ð7Þ

where RI stands for the ecological risk of multiple elements
and Ei

r is the potential ecological risk of each element i. Ti
r is

the metal toxic factor. The following Ti
r values were consid-

ered:Mn = Zn = Sr = Ti = 1, V=Cr = 2, Cu = Co =Ni = Pb = 5,
As = Sb = 10, Cd = 30, and Hg = 40 (Hakanson 1980; Li et al.
2018b). Five categories are used to describe the different risk
levels according to their Ei

r value: E
i
r < 40 represents a low

risk; 40 < Ei
r < 80 a moderate risk; 80 <Ei

r < 160 a consider-

able risk; 160 <Ei
r < 320 a high risk; and Ei

r > 320 a very high
risk. On the other hand, RI values are categorized into four
categories: RI < 150 low risk, 150 ≤ RI < 300 moderate risk,
300 ≤ RI < 600 considerable risk, and RI ≥ 600 very high risk
(Hakanson 1980).

Statistical analysis and mapping

Statistical analysis, including Spearman correlation, cluster
analysis, and principal component analysis (PCA) were con-
ducted using the SPSS v.15 software package (IBM
Corporation, Armonk, NY). The maps reporting the pollution
indexes spatial distribution were generated using Kriging as
the interpolation method for the 31 road dust samples
(3DFieldPro v.4.3.1.0 software (http://3dfmaps.com/).

PCA with VARIMAX rotation and Kaiser normalization
were used to identify the possible sources of the variance for
the different elements that were measured. Prior to the statis-
tical analysis, the data set distribution was evaluated using the
Lilliefors normality test. When the distribution was not nor-
mal, data were transformed using the Box-Cox transformation
from the package AID included in the software R (Asar et al.
2017). Several elements that yielded EF < 2 were removed
from the PCA in order to decrease the number of variables.
After that, the Kaiser-Meyer-Olkin (KMO) value of the sam-
pling adequacy (> 0.5) and the significance level of the
Barlett’s test of sphericity (< 0.001) indicated that the data
was suitable for the multivariate statistical analysis. Finally,
principal components were extracted from the variables with
eigenvalues > 1, and the PCA results were only acceptedwhen
(i) the sum of those principal components accounted for more
than 75% of the total variance of the dataset, and (ii) all the
communality values were ≥ 0.6. A hierarchical cluster analy-
sis (HCA) using the Ward’s method and the Euclidean

distance was also performed to identify similarly contaminat-
ed sites.

Results and discussion

Chemical composition of road dust

The mean concentrations, range of variations (minimum and
maximum values), and standard deviations for each element
analyzed are reported in Table S2 (Online Resource 1). The
UCC values (Rudnick and Gao 2014) and background values
for Cuban soils (Alfaro et al. 2015, 2018) are also reported for
comparison purpose in Table S2. Results indicate that the
concentrations for TN, S, Ca, V, Cu, Zn, Mo, Sn, Hg, and
Pb in our road dust samples are higher than the corresponding
background values for both Cuban soils and the UCC. Cr, Ni,
As, Cd, and Sb concentrations were higher than the UCC
values but similar or slightly lower than the background
values for Cuban soils. In addition, the concentrations for
TN, P, S, Cu, Zn, As, Mo, Sn, Sb, W, Hg, and Pb varied
greatly among the different sampling sites (RSD > 40%),
which may suggest contributions from numerous distinct an-
thropogenic sources (Abbasi et al. 2017; Keshavarzi et al.
2018; Xu et al. 2018). The average Hg concentrations, equiv-
alent to 9.8 and 4.9 times the UCC and the Cuban soil back-
ground values, respectively, showed the highest heterogeneity
with a RSD of 127%.

When compared to those of other urban areas in the world
(reported in Table S3 in the Online Resource 1), levels of Cr,
Cu, Zn, and Pb were higher in Cienfuegos than those observed
in Camagüey (Díaz Rizo et al. 2015), a bigger Cuban city,
while Fe, Co, and Ni were similar. In general, the mean Ca,
Rb, and V concentrations in the present study were signifi-
cantly higher than those reported in other urban environments
worldwide. Several potential sources for these elements are
present within the study area, such as the cement plant located
25-km ENE (under the prevalent wind direction) of
Cienfuegos that is fueled by petroleum-coke as well as the
power plant located within the city (near sampling site no.
10) that is fueled by Cuban heavy crude oil. The highest Ca
concentrations may also correspond to emissions from con-
struction and repair activities largely operating in the city dur-
ing recent years. Other potential sources include asphalt pave-
ment weathering and shipping emissions. Morera-Gómez
et al. (2018a, 2019) recently measured high Ca and V concen-
trations in PM10 and atmospheric bulk deposition samples in
Cienfuegos that the authors attributed to these sources.
Similarly, average concentrations for Cu, Mo, Hg, and Pb
were comparable to those reported in other more industrial-
ized and developed cities, such as Ottawa, Luanda, or Beijing
(Rasmussen et al. 2001; Ferreira-Baptista and De Miguel
2005; Yu et al. 2016). These elements are commonly
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associated with both exhaust and non-exhaust road traffic
emissions (Johansson et al. 2009; Grigoratos and Martini
2015; Adamiec et al. 2016). Road traffic in Cuba is mainly
dominated by very old cars running on diesel, a feature that is
recognized for enhancing the levels of heavy metals originat-
ing from the fuel, the lubricating oil motor, brake, and tire
wear (Das et al. 2017). All other elements are within the range
of variations reported for the cities listed in Table S3 (Online
Resource 1), which usually are bigger, more industrialized,
and developed than Cienfuegos.

The Spearman correlation analysis showed that elements
with a typical crustal origin such as Na, K, Al, Fe, Mn, Ge, Ti,
Zr, and the lanthanoid elements (La to Lu) were strongly and
positively correlated (with r values usually > 0.6; p < 0.01)
confirming a common origin. While Ca was also strongly
correlated with these elements, its correlation coefficient was
negative indicating it has a distinct origin. Cu was found to be
uncorrelated with most of the studied elements but showed
strong correlations with Pb (r = 0.8, p < 0.01), Fe (r = 0.7, p
< 0.01), Sn (r = 0.7, p < 0.01), and Sb (r = 0.8, p < 0.01),
indicating that these elements originate from a single source,
probably related to road traffic emissions since these element
are their typical tracers (Johansson et al. 2009; Grigoratos and
Martini 2015). Similarly, V–Ni (r = 0.7, p < 0.01), Cr–Co (r =
0.6, p < 0.01), Cr–Ni (r = 0.7, p < 0.01), Cu–Hg (r = 0.6, p <
0.01), Zn–Ni (r = 0.6, p < 0.01), Zn–Hg (r = 0.7, p < 0.01), S–
Mo (r = 0.6, p < 0.01), As–Sb (r = 0.6, p < 0.01), Sb–Hg (r =
0.5, p < 0.01), and Pb–Hg (r = 0.5, p < 0.01) were found to be
significantly correlated, maybe suggesting the influence of
emissions from other anthropogenic sources. The significant
correlations observed between Hg and several heavy metals
also suggest distinct sources for this pollutant, in agreement
with its high variability in the studied urban area. In addition,
Vand As were significantly correlated (r > 0.5, p < 0.01) with
most of the crustal elements aforementioned, hinting that they
may also have a crustal origin.

These results evidence that elements such as V have both
natural and anthropogenic origins. While the average V/Ni
ratio (2.9 ± 0.6) lied within the range of natural geological
materials (2–3), several sampling sites yielded ratios in the
range of 3–4, typical of oil combustion (Moreno et al.
2010). On the other hand, La/V ratios (0.07 ± 0.02) exhibited
very low values compared to those of mineral particulate mat-
ter coming from uncontaminated crustal materials or coal
combustion (typical values around 0.2–0.3; Moreno et al.
2008; Celo et al. 2012), indicating a strong influence of emis-
sions from oil and/or petroleum-coke combustion. Similar re-
sults were recently reported in PM10 and atmospheric bulk
deposition collected in Cienfuegos (Morera-Gómez et al.
2018a, 2019). Other indicators, such as the La/Ce ratio (aver-
age of 0.45 ± 0.02; within the range of crustal materials (0.4–
0.6): Moreno et al. 2010), confirmed the crustal origin of the
lanthanoid elements in the study area.

Stable carbon and nitrogen isotope compositions

The stable C and N isotope compositions of road dust samples
collected in Cienfuegos are shown in Fig. 2a. Both δ13C and
δ15N displayed large variations from − 18.0 to − 9.4‰ (aver-
age of − 13.1 ± 2.0‰) and from − 20.5 to 7.1‰ (average of −
5.0 ± 5.6‰), respectively. δ13C and δ15N were roughly cor-
related (r = − 0.54, p < 0.01), suggesting that both C and N
contents may be controlled by common sources and process-
es. A recent study by Morera-Gómez et al. (2018b) character-
ized the δ13C of aerosols emitted by several sources of con-
tamination in Cienfuegos: soot particles from the combustion
of diesel (δ13C = − 26.3‰) and gasoline (δ13C = − 25.2‰),
shipping (δ13C = − 25.7‰), and power plant (δ13C = − 27.1 ±
0.2‰) as well as local soils (δ13C = − 20.5 ± 4.8‰).While our
road dust samples were all enriched in 13C relative to these
sources, they showed δ13C similar to the one measured in a
bulk deposition sample collected in the vicinity of the cement
plant (− 15.3‰). Their δ13C were similar to those measured in
cement (− 11.6 ± 2.0‰) and kiln (− 15.5 ± 0.5‰) dust sam-
ples in a cement plant in Barcelona (Mari et al. 2016). These
results suggest that the cement plant and its related activities
(construction, work in quarries, transportation of cement and
row materials…) are controlling the δ13C signature of road
dust in Cienfuegos. As previous studies mostly report more
13C-depleted isotope compositions (Lopez-Veneroni 2009;
Kawashima and Haneishi 2012; e.g. Bandowe et al. 2018)
compared to our road dust samples, it also comes that, unlike
Cienfuegos, other cities worldwide usually are not affected by
emissions from cement plant activities. Supporting the above
hypothesis, the δ13C showed a good correlation with the C/Ca
ratio (r = − 0.77, p < 0.01; Fig. 2b), which is consistent with a
13C-enrichment resulting from the presence of carbonates that
have typical δ13C centered around 0‰ (Kump and Arthur
1999). δ13C values also strongly correlated with the Ca con-
centrations (r = 0.76, p < 0.01) but not with the TC concen-
trations, which probably reveals several contributing sources.

On the other hand, the large range of δ15N (from − 20.5 to
7.1‰) measured in our road dust samples overlapped those
reported by Morera-Gómez et al. (2018b) for soot particles
from the combustion of diesel (δ15N = 1.7‰) and gasoline
(δ15N = − 1.8‰), shipping (δ15N = 3.0‰), soil samples (δ15N
= 1.0 ± 2.8‰), and a bulk deposition sample collected from
the vicinity of the cement plant (δ15N = 5.6‰) in Cienfuegos.
In contrast, our δ15N were depleted in 15N with respect to the
power plant emissions (δ15N = 11.4 ± 3.4‰). This suggests
that several distinct sources are contributing to the overall TN
budget in road dust and/or that secondary processes ultimately
modify the initial δ15N (i.e., these secondary processes induce
nitrogen isotope fractionations). The fact that δ15N showed a
15N enrichment with the increasing TN content (Fig. 2c) sup-
ports the hypothesis that secondary processes are controlling
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the final N content in road dust. This 15N enrichment was also
observed with the decreasing TC/TN ratio (Fig. 2d).

If the trends we are observing between δ15N-TN and δ15N-
TC/TN (Fig. 2c, d) actually reflect the formation of secondary
nitrogen, it can be assumed that the road dust particles having
the lowest TN are mostly representative of the source(s) of
primary nitrogen (e.g., their TN is mostly controlled by pri-
mary nitrogen as they are lowly affected by secondary pro-
cesses and thus contain low secondary nitrogen). Taking also
into account that all particles we analyzed from the emission
sources in Cienfuegos present TN and TC/TN ratios similar or
higher to the highest values observed in our road dust samples
(Morera-Gómez et al. 2018b), we can assume that (1) second-
ary processes result in a 15N depletion (i.e., δ15N decrease
with decreasing TN) and, as particles from local top soils
(TN = 0.6 ± 0.3% and TC/TN = 20.4 ± 10.2) yielded δ15N
consistent with the isotope ranges, we measured for high-TN
in road dust, that (2) top soils represent a potential source of
primary nitrogen. Degraded terrestrial particulate organic mat-
ter (POM) have typical values of TC/TN (Andrews et al.
1998) that are consistent with the ratios we measured in road
dust that had the highest δ15N. In addition, García-Moya (per-
sonal communication, 2019) showed that POM in wastewater
from Cienfuegos is characterized by δ15N = 0.7 ± 2.4‰, TN =
3.6 ± 1.4%, and TC/TN = 7.8 ± 0.6, and thus may also be
considered a source of primary nitrogen. Other potential
sources include animal wastes, with typical δ15N between 0
and 25‰ (Kojima et al. 2011; Alonso-Hernández et al. 2017),
since horse-drawn carriages are commonly used for transpor-
tation in Cienfuegos and can generate a substantial amount of
organic matter on roads.

Ultimately, the processes that explain the positive relation-
ship observed in Fig. 2c (or negative in Fig. 2d) may be two-
fold: (1) the production of nitrates by nitrification that induces
a 15N depletion (e.g., Amiri et al. 2015), followed by (2) a
dilution by runoff during the frequent wet season rainfalls in
Cuba that will result in a decrease in the TN content (Kojima
et al. 2011) without affecting the corresponding δ15N. In order
to confirm that hypothesis further studies focusing on samples
collected during the dry period and the determination of their
corresponding δ15N–NO3

− are needed.

Assessment and spatial distribution of contamination

EF from major and trace elements showed that TN, Cd, Hg,
and Pb were highly enriched (Fig. 3), indicating they are
mainly emitted by anthropogenic sources. Ca, S, Sb, Sn,
Mo, Zn, and Cu were, in average, moderately enriched (2 ≤
EF ≤ 10) but several sampling sites yielded high EF > 10 that
suggest these are also significantly impacted by anthropogenic
sources. P, V, Cr, and Rb presented EF around 2, suggesting
relatively low anthropogenic contributions. The rest of the
elements were predominantly of natural origin with EF < 2.
It can be noted that among the most enriched elements (EF >
4.9 in Fig. 3), sampling sites 03, 06, 09, 14, 18, and 19 gave
even higher EF that reached 100 for total nitrogen at site 14.
These sites are all located along or near busy roads. This
confirms that emissions related to road traffic (e.g., exhaust
or brake tire and pavement wear...) is a major source for these
elements (Cu, Zn, Pb, Cd, Sb, Sn, Hg, Mo, and S), in agree-
ment with recent studies (e.g., Abbasi et al. 2017; Alves et al.
2018; Keshavarzi et al. 2018). The high N enrichment
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observed in some of the road dust samples may result from the
input of soil particles that in Cienfuegos present N contents
significantly higher than the UCC values (Morera-Gómez
et al. 2018b), but also from the input of organic matter. As
previously discussed, horse-drawn carriage is a very common
mean of transportation in Cienfuegos and sampling site 14
(where the total nitrogen EF of 100 was measured; Fig. 3) is
located on one of its most common routes. Another possible
source of organic matter is wastewater overflows that usually
occur in many roads and sites throughout the city
(Soonthornnonda and Christensen 2008).

Fifty-eight percent of the PLI calculated in Cienfuegos was
higher than 1, with variations from 0.77 to 1.43 and an average
value of 1.07 ± 0.15. The distribution pattern for PLIs is shown
in Fig. 4a. PLI tended to increase towards downtown (sam-
pling sites 1–6 and 31), the city main avenue (sampling sites 7,
19–21), near the train station (sampling site 16, near the inter-
section of the railway with the road), the urban residential area
(sampling site 29), and one of the main highways entering the
city (sampling sites 11–12). Road traffic is more concentrated
in those areas. Additionally, the PLIzone calculated for
Cienfuegos was 1.06. That corresponds to a slightly polluted
urban area on the classification scale.

To better understand the pollution degree of 14 potentially
toxic heavy metals, we also calculated their corresponding
potential ecological risk indexes Ei

r (Table 1). Ei
r values for

V, Cr, Mn, Co, Ni, Zn, As, Sr, and Ti were all < 40. These
elements present thus a low ecological risk. The mean Ei

r
value for Cu was < 40 although site 03, located near busy
roads and a motor garage, showed a higher index (Ei

r ¼ 67Þ,
indicative of a moderate ecological risk. Pb and Sb with aver-
age indexes of 40 and 57, respectively, presented a moderate
ecological risk, whereas Cd (average Ei

r of 398) and Hg (av-

erage Ei
r of 392) showed a very high risk. Furthermore, the

calculated RI was > 300 for all sites and even > 600 for 19 of
the 31 sites, which indicates a considerable to very high eco-
logical risk in the study area. Both, Cd and Hg, contributing to

42% of the total RI, appear as priority pollutants to be included
in the monitoring of road dust in Cienfuegos. The spatial dis-
tributions of RI (Fig. 4b) was similar to that of PLI (Fig. 4a)
and identified 6 well-defined hotspots: 4 located downtown
and along busy roads (sites 1, 6, 7–19, 21, and 14), 1 near the
train station (site 16), and a last one on one of the city high-
ways (site 9, with the highest RI value, mainly controlled by
its high Hg Ei

r ). These results demonstrate that road dust in
Cienfuegos is contaminated by heavy metals that have high
associated ecological risks. These conclusions confirm that
contamination of road dust in Cienfuegos should be a concern
for local authorities as these elements threaten both ecological
and human health (Wei et al. 2009; e.g. Li et al. 2018b).

Source identification and site classification

The PCA results allowed to define 5 principal components
accounting for 77% of the total variance. We used the factor
loadings higher than 0.5 (highlighted in italics in Table 2) to
identify the most probable sources of contamination. Factor 1
(F1), explaining 35.1% of the total variance, was characterized
by high positive K, Na, Mn, Fe, Ti, and As factor loadings
coupled to negative Ca and TC ones. This indicates that the
mineral fraction of the soil contributes to the urban road dust,
as most of these positively correlated elements are both typi-
cally of crustal origin and presented minimal enrichments.
Moreover, the significant negative Ca and TC factor loadings
indicate CaCO3 inputs from sources such as cement produc-
tion and transportation, construction, and other activities that
can generate contamination by direct emissions, resuspension,
and atmospheric deposition. The significant As factor loading
(0.702) confirms its crustal origin as well as, to a lesser extent,
for V (0.390). Factor 2 (F2), 15.5% of the total variance,
showed a strong correlation with Ni, Co, Cr, V, Hg, Zn, Ti,
and Mn. These elements, especially Vand Ni at high concen-
trations, are usual constituents of the asphalt pavement (e.g.,
Dehghani et al. 2017), which is widely used in Cuban roads.
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Similarly, Ni, Cr, Ti, and Mn are common constituents of the
pavement aggregates (rocks, sands...; Kupiainen et al. 2005;
Manno et al. 2006; Li et al. 2016). Thus, factor 2 shows that
road pavement wear is an important source for these elements.
The associated moderate Hg factor loading (0.549) indicates
that road pavement, although a potential source, is not the
unique source of Hg in the dust. In addition, high concentra-
tions of V, Ni, Ti, and Zn were measured in fly and bottom
ashes emitted by the combustion of Cuban heavy crude oil
from the power plant located in the city (Alonso-Hernandez
et al. 2011; Morera-Gómez et al. 2018a). These emissions can
also be found deposited onto urban roads.

Factor 3 (F3), 11.1% of the total variance, yielded high Pb,
Sb, Cu, and Sn factor loadings, elements usually linked to
road traffic (Johansson et al. 2009). These elements were
moderately to highly enriched and strongly correlated in our
samples. Cu, Sb, and Sn have been extensively used as spe-
cific tracers for brake wear (Sternbeck et al. 2002; e.g. Adachi
and Tainosho 2004; Grigoratos and Martini 2015). Although
mostly phased out worldwide since the 1990s, the combustion

of leaded gasoline is still associated with the presence of Pb in
street dust as it is a persistent element showing poor mobility
(Keshavarzi et al. 2018). However, road traffic in Cuba is
dominated by diesel cars. Other potential sources of Pb in-
clude exterior paints, industrial emissions, and wastes
(Taiwo et al. 2014; Keshavarzi et al. 2018). In factor 4 (F4),
accounting for 9.5% of the total variance, S, Mo, and W were
strongly associated (Table 2) and TC presented a moderate
factor loading (0.404). These elements are mostly found in
industrial atmospheric emissions (Taiwo et al. 2014). Here,
they were moderately to highly enriched, confirming the an-
thropogenic origin of these elements in Cienfuegos.
Combustion of the sulfur-rich Cuban crude oil by the local
power plant has been connected to high S and TC contents in
Cienfuegos ambient aerosols (Morera-Gómez et al. 2018a, b).
High Mo concentrations have also been observed in bottom
ashes from this power plant (Alonso-Hernandez et al. 2011).
Mo-bearing compounds, including molybdenite (MoS2), are
used as catalyzers in oil refining and petrochemical processes
(Abbasi et al. 2018), as lubricants and are present in

Fig. 4 Distribution patterns for (a) the pollution load index (PLI) and (b) the ecological risk index (RI) calculated from road dust samples in Cienfuegos,
Cuba

Table 1 Statistic summary of calculated Ei
r and RI values

Ei
r RI

V Cr Mn Co Ni Cu Zn As Sr Cd Pb Ti Sb Hg

Mean 4 4 1 4 7 19 4 12 1 398 40 1 57 392 945

Min 2 2 1 3 4 8 2 6 1 233 15 1 22 69 391

Max 8 6 2 6 11 67 13 24 1 971 111 1 131 2270 2957

SD 1 1 0 1 2 11 2 5 0 145 24 0 25 499 569

Fraction of RI (%) 0.4 0.4 0.1 0.5 0.7 2.0 0.4 1.3 0.1 42.2 4.2 0.1 6.1 41.5
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motorcycle brake pads. W, on the other hand, has been found
at low concentrations in brake wear (Johansson et al. 2009).
The last factor (F5) explained 5.3% of the variance and was
represented by high TN and Cd factor loadings. High Cd and
N levels are typical of a wide range of urban sources, includ-
ing paints, solid wastes, wastewaters, and fertilizers (Li et al.
2018a; Modabberi et al. 2018). As discussed above, organic
matter appears as a major source of N road dust in Cienfuegos.

Finally, sampling sites were classified into four distinct
groups following a hierarchical cluster analysis based on their
chemical and stable C and N isotope compositions (Fig. 5).
Cluster 1 represents the contribution from the pavement wear
and includes the sites with the highest Zn, Ni, Cr, Co, and Hg
average concentrations. Cluster 2 yielded the highest Cu, Sb,
Sn, As, and Pb average concentrations coupled to the lowest
δ13C, identifying sites mostly affected by road traffic. These
first two clusters regroup sites that are located on the busiest
roads, intersections, and highways of the city, confirming the
conclusions that we drew from the PCA. Cluster 3 includes the
sampling sites that yielded the lowest average concentrations

for most of the potentially toxic elements as well as the lowest
δ15N values. These sites are mainly located in residential areas
with low road traffic. Cluster 4 corresponds to sites with the
highest average Ca and TC concentrations and the highest
δ13C indicating a strong carbonate contribution, probably emit-
ted by the cement production, construction, and related activ-
ities. These sites also had the highest average S, W, and Mo
concentrations, whichmay be related to the emissions from the
power plant. Several of this cluster’s sites (4, 6, 8, and 9) are
the closest to the city power plant (~ 1.0–1.5 km). Moreover,
cluster 4 includes the sites with the highest Cd and TN con-
centrations and the highest δ15N, probably explained by the
fact that most of these sites (in particular sites 13–15, 17, and
18) are routes frequently used by horse-drawn carriages and
thus are commonly impacted by organic matter inputs.

Implications for environmental and human health

Road dust is constituted by a complex mixture of particles,
among which the smaller fraction may be resuspended by
physical processes and thus poses a respiratory risk to human
health (LeGalley et al. 2013 and reference therein). The pres-
ence of potentially toxic metals, organic compounds, and oth-
er associated contaminants may also have environmental

Table 2 Factor loadings for the Varimax rotated principal components

Element Component

F1 F2 F3 F4 F5

K 0.941 − 0.203 0.045 0.037 − 0.047

Na 0.897 − 0.007 0.154 − 0.074 − 0.051

Ca − 0.779 − 0.137 − 0.162 0.054 − 0.256

Mn 0.762 0.473 0.174 − 0.037 − 0.032

Fe 0.755 0.342 0.300 0.198 − 0.055

Ti 0.735 0.513 0.214 − 0.196 − 0.071

As 0.702 0.162 0.328 0.190 0.154

TC − 0.563 − 0.190 − 0.072 0.404 0.487

Ni − 0.032 0.898 0.172 0.110 0.111

Co 0.342 0.802 − 0.083 0.113 − 0.037

Cr 0.022 0.797 0.086 − 0.194 − 0.245

V 0.390 0.607 0.326 − 0.164 0.172

Hg 0.144 0.549 0.352 − 0.095 0.347

Zn 0.121 0.524 0.395 0.180 0.470

Pb 0.128 0.040 0.861 0.125 − 0.050

Sb 0.169 0.197 0.853 0.070 0.222

Cu 0.253 0.178 0.850 − 0.026 0.077

Sn 0.250 0.113 0.802 − 0.073 − 0.034

S − 0.065 0.014 − 0.002 0.895 0.019

Mo − 0.005 0.136 − 0.127 0.727 0.452

W 0.076 − 0.146 0.204 0.723 0.123

TN 0.030 0.117 − 0.137 0.322 0.790

Cd 0.014 − 0.086 0.257 0.042 0.771

Eigenvalues 8.070 3.573 2.555 2.189 1.224

% of variance 35.09 15.54 11.11 9.52 5.32

Cumulative % 35.09 50.62 61.73 71.25 76.57

Fig. 5 Dendrogram obtained by hierarchical cluster analysis using the
Ward’s method criterion
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impacts (Abbasi et al. 2017; Modabberi et al. 2018).
Ultimately, road dust and its associated contaminants can play
a critical role in degrading the quality of receiving water bod-
ies (Sutherland and Tolosa 2000). Cienfuegos Bay is subject
to important road runoff either directly or through drainage
systems, especially during the wet season when this study
was conducted. Road runoff discharge into the Bay may also
carry a significant amount of nutrients. The availability of
these nutrients in excess to this coastal ecosystem is also a
key factor that, coupled with the local high salinity, tempera-
ture, irradiance, and water residence time, can contribute to
toxic algal blooms (Walsh et al. 2006; Cuellar-Martinez et al.
2018). Recently, such events occurred at popular beaches in
Cienfuegos Bay and were linked to skin lesions, specially
impacting children (Moreira González et al. 2016).

Cienfuegos local authorities now invest considerable
efforts and resources to monitoring local environment,
including water quality in the Cienfuegos Bay (Seisdedo
et al. 2016, 2019). Our results should help them design a
more effective implementation of environmental manage-
ment measures against water, soil, and air contamination
in Cienfuegos. Several cities worldwide have already im-
plemented sweeping and street cleaning systems that col-
lect dusts in dedicated containers (Manuel Trujillo-
Gonzalez et al. 2016 and references therein; Lloyd et al.
2019). Proper disposal of solid waste and more efficient
wastewater drainage systems are now also issues of increasing
concern for local governments.

Conclusions

An exhaustive chemical and stable C and N isotope composi-
tion characterization of road dust was conducted for first time
in the mid-size city of Cienfuegos in Cuba, helping us to better
understand the contamination spatial distribution and the im-
plication of the different sources that adversely impact the
local environment quality.

Results show that the δ13C of road dust identify the pres-
ence of carbonates that can be related to atmospheric emissions
from the cement plant and related activities (construction, work
in quarries, transportation of cement and rawmaterials…). The
δ15N, on the other hand, shows a 15N depletion with the de-
crease of the TN content, indicating nitrogen isotope fraction-
ations induced by secondary processes. Comparison with the
characteristics of potential sources of contamination allows us
to conclude that primary nitrogen may mainly be generated by
POM inputs. Both the pollution load and the ecological risk
indexes demonstrate that road dust in Cienfuegos is contami-
nated and have associated high ecological risks, especially
along busy roads and downtown. The PCA analysis identifies
the major local sources of contamination: mineral matter from
the soil, atmospheric emissions by the cement plant and related

activities, road pavement alteration, atmospheric emissions by
the power plant, road traffic, and POM.

Our results suggest that the chemical and isotope monitor-
ing of road dust should be included in future overall contam-
ination management schemes.
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